1 (число)

натуральне число

1 (оди́н, одини́ця) — найменше натуральне число, ціле число між 0 і 2.

1 (число)
Стаття у Вікіпедії
Медіафайли у Вікісховищі

Цитати

ред.
  •  

Одиниця, якою б вона не здавалась тотожною самій собі, містить у собі безконечну різноманітність, бо вона може бути нульовим степенем будь-якого іншого числа; а що ця різноманітність аж ніяк не уявна, виявляється щоразу, коли одиниця розглядається як визначена одиниця, як один із змінних результатів якого-небудь процесу (як миттьова величина або форма якоїсь змінної) у зв'язку з цим процесом.

  Ф. Енгельс[1]
  •  

Ніщо не має простішого вигляду, ніж кількісна одиниця, і ніщо не є різноманітнішим, ніж ця одиниця, як тільки ми почнемо вивчати її у зв'язку з відповідною множинністю, з точки зору різних способів постання її з цієї множинності. Одиниця — це, насамперед, основне число всієї системи додатних і від'ємних чисел, завдяки послідовному додаванню якого до самого себе постають усі інші числа. — Одиниця є вираження усіх додатних, від'ємних і дробових степенів одиниці:  , ,   усі дорівнюють одиниці. — Одиниця є значення всіх дробів, в яких чисельник і знаменник виявляються рівними. — Вона є вираження усякого числа, піднесеного до нульового степеня, і через це вона єдине число, логарифм якого в усіх системах один і той самий, а саме = 0.

  Ф. Енгельс[1]
  •  

Одиниця і множинність є неподільними поняттями, що проймають одно одне… множинність так само міститься в одиниці, як і одиниця в множинності.

  Ф. Енгельс[2]
  •  

Серед усіх ідей, що ми маємо, найпростішою є ідея єдності, або одиниці. У ній немає навіть тіні різноманітності або складності.

  Дж. Локк[3]
  •  

Геометрія кладе в основу чисте споглядання простору. Арифметика створює поняття своїх чисел послідовним додаванням одиниць у часі.

  І. Кант[4]

Примітки

ред.

Джерела

ред.

Математика в афоризмах, цитатах і висловлюваннях / Н. О. Вірченко. — Київ: Вища школа, 1974. — 272 с.